

MIXED USE DEVELOPMENT 8-10 NEW MCLEAN STREET, EDGECLIFF NSW

Prepared for:

GEOSYNTEC CONSULTANTS PTY LTD

Reference: P2868_01

17 April 2023

Morrow Geotechnics Pty Ltd | ABN 42 605 892 126 79/6 Bellambi Lane, Bellambi NSW 2218 P: 0405 843 933 | E: info@morrowgeo.com.au

1 INTRODUCTION

Morrow Geotechnics Pty Ltd has undertaken a Geotechnical Desktop Study (GDS) for the proposed development at 8-10 New Mclean Street, Edgecliff NSW (the site). This GDS report has been prepared to provide advice and recommendations to accompany a development application (DA) to Woollahra Municipal Council for the proposed mixed-use development.

1.1 Proposed Development

Morrow Geotechnics has viewed preliminary Architectural drawings prepared by fjcstudio dated 28/03/2023. We understand the proposed development will involve the construction of multi storey towers consisting of mixed use residential and commercial spaces over three levels of basement parking. Excavation is expected to extend to a depth of approximately 10 m below ground level (mBGL).

1.2 Purpose of the Desktop Study

The purpose of the GDS is to review available data and to provide geotechnical advice and recommendations addressing the following:

- Description of the anticipated surface and subsurface conditions at the site;
- Building and retaining wall foundation options, including preliminary design parameters;
- Approaches to limit potential impacts on adjacent structures, services and roads;
- Construction constraints including groundwater management requirements, if necessary; and
- The requirement for additional geotechnical investigations.

1.3 Scope of Work

The scope of works for the GDS included:

- Review of available information from in-house sources;
- Review readily available plans, images and documents pertinent to the area;
- Review relevant soil landscape and geological maps for the project area;
- Review of any readily available aerial photographs;
- Review hydrogeological plans for the area; and
- Review DBYD plans and any plans provided by the client of existing buried services on site.

1.4 Investigation Constraints

The GDS is limited by the preliminary intent of the study and the fact that no intrusive investigations have been undertaken at this stage. The discussions and advice presented in this report are intended for the development of preliminary designs for the development. Further geotechnical investigations should be carried out after DA approval and site clearance to confirm both the geotechnical and groundwater model, and the preliminary design parameters provided in this report.

2 SITE DESCRIPTION

2.1 Site Description and Identification

The site identification details and associated information are presented in Table 1.

 TABLE 1
 SUMMARY OF SITE INFORMATION

Information	Detail
Local Government Authority	Municipality of Woollahra
Current Zoning	R3 - Medium Density Residential Woollahra Local Environmental Plan 2014. See Figure 2 .
Site Description	The site is roughly rectangular in shape and comprises one lot. At the time of the study, the site was occupied by two multi storey brick residential buildings with a parking lot and pool. Paved surfaces were found to be in moderate condition.
Site Area	Approximately 7320 m ² (from Six Maps, maps.six.nsw.gov.au)

FIGURE 2: CURRENT ZONING (SOURCE: PLANNINGPORTAL.GOV.AU; ACCESSED 28 MARCH 2023)

P2868_01 17/04/2023 Page 4

2.2 Local Land Use

The site is situated within a residential area. Current uses on surrounding land are described in Table 2.

Direction Relative to Site	Land Use Description
North	New McLean Street followed by Edgecliff Centre Shopping Mall and Edgecliff Railway Station
East	Single- and double-storey residential buildings.
South	Trumper Oval and
West	A large four storey brick residential building on a lot that connects from New McLean Street back to Glenmore Road.

 TABLE 2
 SUMMARY OF LOCAL LAND USE

The site lies outside of the planning legislation's 25 m impact radius from Edgecliffe Railway Station.

FIGURE 3: PROXIMITY TO EDGECLIFF RAILWAY STATION (SOURCE: MAPBOX; ACCESSED 13 SEPTEMBER 2023)

2.3 Regional Setting

The site topography, geological and hydrogeological information for the locality is summarised in Table 3.

Attribute	Description
Topography	Regional topography grades downwards to the southwest at an approximate gradient of 4-8° across the site.
Soil Landscapes	The Soil Conservation Service of NSW Sydney 1:100,000 Soil Landscapes Series Sheet 9029-9030 (2nd Edition) indicates that the erosional landscape at the site likely comprises the Hawkesbury Landscape. This landscape type typically includes rugged, rolling to very steep hills on Hawkesbury Sandstone with slopes of over 25 %. Soils are generally shallow (> 0.5 m) discontinuous lithosols/siliceous sands associated with rock outcrop, earthy sands, yellow earths and some yellow podzolic soils. These soils are noted to present extreme soils erosion hazard, steep slopes, rock outcrop, and shallow, stony, highly permeable soil. See Figure 4 .
Regional Geology	Information on regional sub-surface conditions, referenced from the Department of Mineral Resources Geological Map Sydney 1:100,000 Geological Series Sheet 9130 (DMR 1991) indicates the site to be underlain by (mf) man-made fill and (Qha) Quaternary Holocene deposits which are typically comprised of silty to peaty quartz sand, silt, and clay, with common shell layers. See Figure 5 .
Acid Sulfate Soils (ASS)	In accordance with the Marrickville Local Environmental Plan 2011 Acid Sulfate Soils Map, the site is not classified for Acid Sulfate Soils. See Figure 6 .

TABLE 3 TOPOGRAPHIC, GEOLOGICAL AND HYDROGEOLOGICAL INFORMATION

FIGURE 4: SOIL LANDSCAPE

The soil landscape likely comprises the Hawkesbury Landscape (Source: The Soil Conservation Service of NSW Sydney 1:100,000 Soil Landscapes Series Sheet 9130 [2nd Edition].)

FIGURE 5: LITHOGRAPHY

The site likely overlies man-made fill and Quaternary Holocene deposits (Source: Sydney 1:100,000 Geological Series Sheet 9130; minview.geoscience.nsw.gov.au; accessed 23 March 2023)

P2868_01 17/04/2023 Page 7

FIGURE 6: ACID SULFATE SOILS

The property is in an area zoned as Class 3 and Class 5 Acid Sulfate Soils in accordance with Council mapping. (Source: planningportal.nsw.gov.au; accessed 28 March 2023.)

An online search was conducted using the NSW Office of Water (NOW) real-time database, which records relevant information pertaining to all licensed water bores for the state of New South Wales did not reveal registered monitoring bores located within 500 m of the site. From previous jobs within similar soil and rock landscapes within the local area our experience is that seepage water may be expected within open excavations from the soil rock interface.

2.4 Expected Stratigraphy

Using the subsurface information from previous geotechnical investigations, published data and archived information, our proposed geotechnical units for the site have been developed to characterise the soil and rock strata and are presented in **Table 4** below. Trumper Oval to the south of the site is known to be an area of historic marshland which has been reclaimed through filling. As such the expected depth of fill at the site will deepen towards the south.

SUMMARY OF INFERRED SUBSURFACE CONDITIONS

Unit	Material	Comments					
1	Fill	Generally fine to medium grained sand and gravels, comprising some silt, cobble and construction waste. Unit 1 is inferred to be uncontrolled and poorly compacted.					
2	Loose Sand	Generally fine-grained Aeolian SAND, poorly graded, moist, grading from loose to very					
3	Medium Dense Sand	dense.					
4	Class V Sandstone	Sandstone Bedrock was not encountered during investigation due to the limitation of using hand equipment only. Sandstone has been inferred from regional geology and knowledge of					
5	Class III-II Sandstone	neighbouring sites. The presence and strength of the sandstone bedrock must be confirmed by cored boreholes prior to the finalisation of detailed designs.					

Detailed descriptions of the material likely to be encountered along with the depth of each stratigraphic unit can only be provided following an intrusive geotechnical investigation comprising cored boreholes.

3 GEOTECHNICAL RECOMMENDATIONS FOR DESIGN

3.1 Overview

Considering the expected subsurface conditions, the proposed development will likely be impacted by the following key geotechnical constraints:

- Soil and weathered rock exposed by excavations will need to be battered back or retained;
- Any uncontrolled fill is likely to have poor engineering properties and be unsuitable for re-use as engineered fill. Unsuitable materials may be removed by screening;
- Basement Excavation and retention to prevent lateral deflections and ground loss as a result of excavations;
- Foundation design for building loads; and
- The possibility of the proposed basement excavation intersecting the groundwater table.

Our preliminary advice and recommendations associated with management of these key geotechnical constraints are provided in the following sections.

3.2 Foundation Options

We recommend that proposed buildings are supported by large pad footings or bored piles found on suitable Sandstone bedrock. To transfer column or building loads to more competent strata at depth and to limit the possibility of adverse foundation settlements or excavation movement, a piled foundation system may be considered. This will depend on specific load cases and specific load bearing locations, which can be optimised once intrusive investigations are undertaken.

Footings should be designed in accordance with AS2870:2011 based on a Site Classification of 'P' with a characteristic surface movement, y_s , of 60 mm. The site classification has been provided on the basis that the performance expectations set out in Appendix B of AS2870–2011 are acceptable and that future site maintenance will be undertaken in accordance with CSIRO BTF 18.

For preliminary design purposes, the 'Foundations on Sandstone and Shale in the Sydney Region' by Pells, Mostyn and Walker (1998), provides a suitable basis for design. Foundation design parameters from Pells et.al. have been provided in **Table 5**. The classification system is based on the primary criteria of rock strength, fracture frequency and the extent of weathered seams. The competency of the rock increases as the 'Class' of rock decreases e.g. Class V represents the poorest quality of rock.

Class of Sandstone	Ultimate End Bearing (MPa) ¹	Allowable End Bearing (MPa) ²	Ultimate Shaft Adhesions (kPa) ³
Class V Sandstone	>3	1	Min. 100
Class III Sandstone	20 to 40	3.5	Min. 600

TABLE 5 TYPICAL FOUNDATION PARAMETERS FOR FOUNDATIONS IN SANDSTONE

Notes:

¹ Ultimate values occur at large settlements (>5% of minimum footing dimensions).

² End bearing pressure to cause settlement of <1% of minimum footing dimensions

³ Clean socket of roughness category R2 or better.

Morrow Geotechnics recommends that a Preliminary Geotechnical Strength Reduction Factor (GSRF) of 0.4 is used for the design of piles in accordance with AS 2159:2009 if no allowance is made for pile testing during construction. Should pile testing be nominated, the GSRF may be reviewed and a value of 0.55 to 0.65 may be expected.

Design of bored piles and shoring systems needs to consider the aggressivity of the ground and groundwater.

Shallow footings and/or piles should be found on soil of similar elastic modulus to limit the risk of differential settlement across the development footprint resulting from varying founding conditions.

3.3 Excavation Retention and Retaining Walls

Temporary batters may be considered for retention during basement excavation only where adequate room for full batter construction is available. Temporary batter slopes of 1.5V:1H will be possible for all units above the water table provided that surface water is diverted away from the batter faces and batter heights are kept to less than 4m. Where batters extend beyond 4 m height benching may be required and further advice should be sought from a qualified geotechnical engineer. Permanent batters of 2.5H:1V may

be employed for excavation design above the water table. Permanent batters will require surface protection or revegetation to prevent erosion and slaking.

The type of retention system chosen will be influenced by proximity to existing structures, services and pavement, the relative stiffness required to limit deformations to an acceptable level, and the inclusion of the wall as the permanent support for buildings.

Anchored soldier pile walls are typically the most economically viable retention method over 5 m in depth in residual landscapes. Vertical cuts may be considered in competent rock provided that support is provided for overlying weaker strata and geotechnical inspections are undertaken during excavation to assess the need for isolate rock block support. For preliminary design of temporary and permanent support we recommend the following:

- Rigid retaining structures, such as propped or anchored walls, should be adopted to limit lateral and vertical movements when in close proximity to existing buildings, pavements and buried services. A rectangular earth pressure distribution may be used with a maximum pressure of 6H or 8H (kPa), depending on the amount of movement that can be tolerated, where 'H' is the effective vertical height of the wall in metres.
- Static water pressures should be taken into consideration in the design of retaining walls when extending below groundwater level, unless subsoil drainage is provided behind retaining walls. A hydrostatic pressure distribution could be used for this analysis.
- Appropriate surcharge loading from construction equipment and vehicular traffic at finished surface level should be adopted in retaining wall design. Any applicable surcharge loads should be added to earth pressures using a lateral earth pressure coefficient of 0.5. A bulk unit weight of 18 kN/m³ can be assumed for fill and residual soils.

We recommend the use of stress/strain dependent analysis during detailed design to further consider likely deformations and to better model the earth pressures and influence of the excavation on adjacent structures, pavements and buried services.

Consideration will need to be given to monitoring lateral and vertical deflections of retained soil and to monitoring construction induced vibrations.

We recommend an allowance is made for a Geotechnical Engineer to inspect the excavation upon reaching a depth of 1.5 m, 3.0 m, 4.5 m and upon completing the bulk excavation to:

- Confirm inferred geotechnical conditions;
- Assess the suitability of design assumptions; and
- Provide further advice with regards to excavation retention and proposed construction methodologies, if required.

3.4 Site Preparation and Earthworks

All earthworks should be carried out in accordance with AS3798:2007, Guidelines on Earthworks for Commercial and Residential Developments. Earthworks compliance testing should be carried out in accordance with AS3798:2007, Table 8.1 with testing to be provided by a National Association of Testing Authority (NATA) accredited testing laboratory.

Working platforms for construction plant and crane pads, placed on in-situ materials or on new fill, should be designed by an experienced and qualified geotechnical engineer.

P2868_01 17/04/2023 Page 11 Should fill placement be proposed over existing ground levels, resulting in additional surcharge of in-situ soils, additional advice should be sought from an experienced and qualified geotechnical engineer regarding potential settlement of the in-situ soils.

3.5 Groundwater Management

A hydrogeological report for the site should be prepared in accordance with Department of Planning, Industry and Environment (DPIE) publication, "Minimum Requirements for Building Site Groundwater investigations and Reporting" (January 2021). According to the DPIE Minimum Requirements, a minimum of three monitoring wells should be installed at the site to be monitored for three months. WaterNSW generally allow for drained basement construction where it can be demonstrated on the basis of permeability testing at the site that groundwater seepage inflow to the site will be less than 3 ML/year.

3.6 AS1170 Earthquake Site Risk Classification

Assessment of the material encountered during the investigation in accordance with the guidelines provided in AS1170.4-2007 indicates:

- an earthquake subsoil class of Class C_e Shallow Soil for the site; and
- a hazard factor (z) of 0.08 for Sydney.

4 RECOMMENDATIONS FOR FURTHER GEOTECHNICAL SERVICES

We recommend that further intrusive geotechnical investigations are carried out to determine:

- Cored boreholes across the site to assess rock level and soil consistency.
- Observation of the groundwater levels within monitoring wells installed as part of the investigation.
- Soil and groundwater samples should be collected and analysed for pH, chloride, sulphate content and electrical conductivity and compared against criteria in AS 2159-2009 Piling Design and Installation to assess aggressivity of groundwater on concrete and steel structures.

Intrusive investigations can be used to assess the nature and sequence of the subsurface strata, including physical and mechanical properties for use in specifying geotechnical design parameters.

5 STATEMENT OF LIMITATIONS

This Geotechnical Desktop Study is based on reviews of previous geotechnical reports, which included specific searches through relevant, historical databases and numerical data. It was assumed that the historical records were complete at the time of preparing each assessment report. This Geotechnical Desktop Study also relies upon data, measurements and/or results taken at, or under, the particular times and conditions specified in the corresponding report.

No warranties are made as to the information provided in this Geotechnical Desktop Study. All strategies, conclusions and recommendations made in this Geotechnical Desktop Study are the professional opinions of Morrow Geotechnics personnel involved with the project and while normal checking of the accuracy of information has been conducted, any circumstances outside the scope of this Geotechnical Desktop Study or which were not made known to Morrow Geotechnics personnel and which may impact on those opinions are not the responsibility of Morrow Geotechnics.

This report, its associated documentation and the information herein have been prepared solely for use with the project specified. No responsibility is accepted for the use of any part of this report in any other context or for any other purpose or by other third parties. Any ensuing liability resulting from use of the report by third parties cannot be transferred to Morrow Geotechnics. This Geotechnical Desktop Study does not purport to provide legal advice.

6 REFERENCES

AS1726:1993, Geotechnical Site Investigations, Standards Australia.

AS2159:2009, Piling – Design and Installation, Standards Australia.

AS2870:2011, Residential Slabs and Footings, Standards Australia.

AS3798:2007, *Guidelines on Earthworks for Commercial and Residential Developments*, Standards Australia.

Chapman, G.A. and Murphy, C.L. (1989), Soil Landscapes of the Sydney 1:100000 sheet. Soil Conservation Services of NSW, Sydney.

NSW Department of Finance and Service, Spatial Information Viewer, maps.six.nsw.gov.au.

NSW Department of Mineral Resources (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1). Geological Survey of New South Wales, Department of Mineral Resources.

Pells (2004) Substance and Mass Properties for the Design of Engineering Structures in the Hawkesbury Sandstone, Australian Geomechanics Journal, Vol 39 No 3

Geotechnical Desktop Study – 8-10 New McLean Street, Edgecliff NSW

7 CLOSURE

Please do not hesitate to contact Morrow Geotechnics if you have any questions about the contents of this report.

For and on behalf of Morrow Geotechnics Pty Ltd,

Alan Morrow Principal Geotechnical Engineer

BOREHOLE LOGS AND EXPLANATORY NOTES

Morrow Geotechnics

Bellambi, NSW Phone: 0405 843 933

morrow

Engineering Log - Borehole

Borehole No: BH1

UTM East Nort RL Tota	ing hing I Depth	: 56H : 336733 : 624975' : N/A : 2.5m	.6 1.0			Driller R Driller S Logged Reviewe Date	ig upplier By d By	: Hand Auger : MG : Feby Markose : Rhiannon Mckeon : 12/04/2023	Job Number Client Project Location	: P2868 : Geosyntec Cor : Edgecliff : 8-10 New McLe	nsultar an St,	nts Pty Edgec	Ltd liff NSW
Drilling Method	Water	DCP	Soil Origin	Graphic Log	Classification Code	Depth (m)	Elevation (m)	Material Description			Consistency	Moisture	Observations
		1	Ξ.		SM	- - - - 0.5 - - -		Fill silty to gravelly SAND (SM) : very loose to loose, bro medium to coarse sized gravel, moist, (con	wn, fine to medii struction waste)	um grained,	VL-L	м	
Hand Auger		1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Natural Natural Natural Natural Natural Natura		SM	- 1 - - - 1.5 - - - 1 <u>.8</u> - - - 2 - -		Natural silty SAND (SM) : loose, yellow orange, fine to r medium sized gravel, (sandstone : AS ABOVE:orange grey, (poorly (nedium grained, gravels) .	with fine to			
		1 2 5 8 7 6 3 5 3 3 3 3 3 3 3 3 3		<u></u>		- 2.5 - - - - - - - - - - - - - - - - - - -		BH1 Terminated at 2.5m (Target	depth reach	ed)			

Morrow Geotechnics

Bellambi, NSW Phone: 0405 843 933

Engineering Log - Borehole

Borehole No: BH2

UTN	1	: 56H				Driller R	ig	: Hand Auger	Job Number	: P2868			
East	ting	: 336778	8.8			Driller S	upplier	: MG	Client	: Geosyntec Cor	nsultar	nts Pty	Ltd
Nort	thing	: 624977:	2.5			Logged	Ву	: Feby Markose	Project	: Edgecliff			
RL		: N/A				Reviewe	d By	: Rhiannon Mckeon	Location	: 8-10 New McLe	an St,	Edgec	liff NSW
Tota	al Depth	n : 1.3m				Date		: 16/04/2023					
Ð				L _	_		_						·
etho	P		igi	Log	atior	Ē	E C	tion			ancy	ure	ling
мб	Wat	DCP	ŏ	ohic	Cod	Ę	atior	ater			siste	oisti	irva
ili			Soi	Graf	lase	l a	leva	Des M			Sol	ž	Dbse
ā					ľ						-		0
			₫	******	SМ			Fill silty to gravelly SAND (SM) : very loose to loose	. brown black. fine t	o medium	VL-L	м	
					Š	-		grained, medium to coarse sized gravel, me	bist, (poorly graded).			
					Č.	_							
					Ğ								
						-							
					ć	-							
					d d	- 0.5							
						0.5							
Vuger					Ś	-							
and #						-							
т						L							
						-							
					Ś	- 1							
					Š								
					č								
					d d	-							
				******	8	-							
								BH2 Terminated at 1.3m	(End of Hole)				
						- 1.5							
						-							
						-							
						-							
						2							
						2							
						-							
						-							
						ſ							
						-							
						- 2.5							
						L							
						F							
						F							
						L							
						- 3							
						F							
						L							
						F							
						ŀ							
						25							
						- 3.5							
						-							
						_							
						ſ							
						-							
1	1				1						1		

Soil and Rock Logging Explanatory Notes

GENERAL

Information obtained from site investigations is recorded on log sheets. The "Cored Drill Hole Log" presents data from an operation where a core barrel has been used to recover material - commonly rock. The "Non-Core Drill Hole - Geological Log" presents data from an operation where coring has not been used and information is based on a combination of regular sampling and insitu testing. The material penetrated in non-core drilling is commonly soil but may include rock. The "Excavation - Geological Log" presents data and drawings from exposures of soil and rock resulting from excavation of pits, trenches, etc.

The heading of the log sheets contains information on Project Identification, Hole or Pit Identification, Location and Elevation. The main section of the logs contains information on methods and conditions, material substance description and structure presented as a series of columns in relation to depth below the ground surface which is plotted on the left side of the log sheet. The common depth scale is 8m per drill log sheet and about 3-5m for excavation logs sheets.

As far as is practicable the data contained on the log sheets is factual. Some interpretation is inevitable in the identification of material boundaries in areas of partial sampling, the location of areas of core loss, description and classification of material, estimation of strength and identification of drilling induced fractures. Material description and classifications are based on SAA Site Investigation Code AS 1726 - 1993 with some modifications as defined below.

These notes contain an explanation of the terms and abbreviations commonly used on the log sheets.

DRILLING

Drilling & Casing

ADV	Auger Drilling with V-Bit
ADT	Auger Drilling with TC Bit
WB	Wash-bore drilling
RR	Rock Roller
NMLC	NMLC core barrel
NQ	NQ core barrel
HMLC	HMLC core barrel
HQ	HQ core barrel

Drilling Fluid/Water

The drilling fluid used is identified and loss of return to the surface estimated as a percentage.

Drilling Penetration/Drill Depth

Core lifts are identified by a line and depth with core loss per run as a percentage. Ease of penetration in non-core drilling is abbreviated as follows:

VE	Very Easy
E	Easy
М	Medium
н	High
VH	Very High

Groundwater Levels

Date of measurement is shown.

Standing water level measured in completed borehole

Level taken during or immediately after drilling

D	Disturbed
В	Bulk
U	Undisturbed
SPT	Standard Penetration Test
Ν	Result of SPT (sample taken)
PBT	Plate Bearing Test
PZ	Piezometer Installation
HP	Hand Penetrometer Test

EXCAVATION LOGS

Explanatory notes are provided at the bottom of drill log sheets. Information about the origin, geology and pedology may be entered in the "Structure and other Observations" column. The depth of the base of excavation (for the logged section) at the appropriate depth in the "Material Description" column. Refusal of excavation plant is noted should it occur. A sketch of the exposure may be added.

MATERIAL DESCRIPTION - SOIL

Classification Symbol - In accordance with the Unified Classification System (AS 1726-1993, Appendix A, Table A1)

Material Description - In accordance with AS 1726-1993, Appendix A2.3

Moisture Condition

D	Dry, looks and feels dry
М	Moist, No free water on remoulding
W	Wet, free water on remoulding

Consistency - In accordance with AS 1726-1993, Appendix A2.5

VS	Very Soft	< 12.5 kPa
S	Soft	12.5 – 25 kPa
F	Firm	25 – 50 kPa
St	Stiff	50 – 100 kPa
VSt	Very Stiff	100 – 200 kPa
Н	Hard	> 200 kPa

Strength figures quoted are the approximate range of undrained shear strength for each class.

Density Index. (%) is estimated or is based on SPT results.

VL	Very Loose	< 15 %
L	Loose	15 – 35 %
MD	Medium Dense	35 – 65 %
D	Dense	65 – 85 %
VD	Very Dense	> 85 %

Soil and Rock Logging Explanatory Notes

MATERIAL DESCRIPTION - ROCK

Material Description

Identification of rock type, composition and texture based on visual features in accordance with AS 1726-1993, Appendix A3.1-A3.3 and Tables A6a, A6b and A7.

Core Loss

Is shown at the bottom of the run unless otherwise indicated.

Bedding

Thinly Laminated	< 6 mm
Laminated	6 - 20
Very Thinly Bedded	20 - 60
Thinly Bedded	60 - 200
Medium Bedded	200 – 600
Thickly Bedded	600 – 2000
Very Thickly Bedded	> 2000

Weathering - No distinction is made between weathering and alteration. Weathering classification assists in identification but does not imply engineering properties.

Fresh (F)	Rock substance unaffected by weathering	
Slightly Weathered	Rock substance partly stained or	
(SW)	discoloured. Colour and texture of fresh	
	rock recognisable.	
Moderately	Staining or discolouration extends	
Weathered (MW)	throughout rock substance. Fresh rock	
	colour not recognisable.	
Highly Weathered	Stained or discoloured throughout. Signs of	
(HW)	chemical or physical alteration. Rock texture	
	retained.	
Extremely	Rock texture evident but material has soil	
Weathered (EW)	properties and can be remoulded.	

Strength - The following terms are used to described rock strength:

Rock Strength	Abbreviation	Point Load Strength
Class		Index, Is(50)
		(MPa)
Extremely Low	EL	< 0.03
Very Low	VL	0.03 to 0.1
Low	L	0.1 to 0.3
Medium	М	0.3 to 1
High	Н	1 to 3
Very High	VH	3 to 10
Extremely High	EH	≥ 10

Strengths are estimated and where possible supported by Point Load Index Testing of representative samples. Test results are plotted on the graphical estimated strength by using:

° Diametral Point Load Test

Axial Point Load Test

Where the estimated strength log covers more than one range it indicates the rock strength varies between the limits shown.

MATERIALS STRUCTURE/FRACTURES

ROCK

Natural Fracture Spacing - A plot of average fracture spacing excluding defects known or suspected to be due to drilling, core boxing or testing. Closed or cemented joints, drilling breaks and handling breaks are not included in the Natural Fracture Spacing.

Visual Log - A diagrammatic plot of defects showing type, spacing and orientation in relation to core axis.

Defects	 Defects open in-situ or clay sealed
	 Defects closed in-situ
	 Breaks through rock substance

Additional Data - Description of individual defects by type, orientation, in-filling, shape and roughness in accordance with AS 1726-1993, Appendix A Table A10, notes and Figure A2.

Orientation - angle relative to the plane normal to the core axis.

Туре	BP	Bedding Parting
	TL	Joint
	SM	Seam
	FZ	Fracture Zone
	SZ	Shear Zone
	VN	Vein
	FL	Foliation
	CL	Cleavage
	DL	Drill Lift
	НВ	Handling Break
	DB	Drilling Break
Infilling	CN	Clean
	х	Carbonaceous
	Clay	Clay
	кт	Chlorite
	CA	Calcite
	Fe	Iron Oxide
	Qz	Quartz
	MS	Secondary Mineral
	MU	Unidentified Mineral
Shape	PR	Planar
	CU	Curved
	UN	Undulose
	ST	Stepped
	IR	Irregular
	DIS	Discontinuous
Rougness	POL	Polished
	SL	Slickensided
	S	Smooth
	RF	Rough
	VR	Very Rough

SOIL

Structures - Fissuring and other defects are described in accordance with AS 1726-1993, Appendix A2.6, using the terminology for rock defects.

Origin - Where practicable an assessment is provided of the probable origin of the soil, eg fill, topsoil, alluvium, colluvium, residual soil.

IMPORTANT INFORMATION

morrow

This Document has been provided by Morrow Geotechnics Pty Ltd subject to the following limitations:

This Document has been prepared for the particular purpose outlined in Morrow Geotechnics' proposal and no responsibility is accepted for the use of this Document, in whole or in part, in other contexts or for any other purpose.

The scope and the period of Morrow Geotechnics' Services are as described in Morrow Geotechnics' proposal, and are subject to restrictions and limitations. Morrow Geotechnics did not perform a complete assessment of all possible conditions or circumstances that may exist at the site referenced in the Document. The scope of services may have been limited by such factors as time, budget, site access or other site conditions. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Morrow Geotechnics in regards to it. Any advice given within this document is limited to geotechnical considerations only. Other constraints particular to the project, including but not limited to architectural, environment, heritage and planning matters may apply and should be assessed independently of this advice.

Conditions may exist which were undetectable given the limited nature of the enquiry Morrow Geotechnics was retained to undertake with respect to the site. Variations in conditions may occur between investigatory locations, and there may be special conditions pertaining to the site which have not been revealed by the investigation and which have not therefore been taken into account in the Document. Accordingly, additional studies and actions may be required. No geotechnical investigation can provide a full understanding of all possible subsurface details and anomalies at a site.

In addition, it is recognised that the passage of time affects the information and assessment provided in this Document. Morrow Geotechnics' opinions are based upon information that existed at the time of the production of the Document. It is understood that the Services provided allowed Morrow Geotechnics to form no more than an opinion of the actual conditions of the site at the time the site was visited and cannot be used to assess the effect of any subsequent changes in the quality of the site, or its surroundings, or any laws or regulations.

Any assessments made in this Document are based on the conditions indicated from published sources and the investigation described. No warranty is included, either express or implied, that the actual conditions will conform exactly to the assessments contained in this Document.

Where data supplied by the client or other external sources, including previous site investigation data, have been used, it has been assumed that the information is correct unless otherwise stated. No responsibility is accepted by Morrow Geotechnics for incomplete or inaccurate data supplied by others.

Where ground conditions encountered at the site differ significantly from those anticipated in the report, either due to natural variability of subsurface conditions or construction activities, it is a condition of the report that Morrow Geotechnics be notified of any variations and be provided with an opportunity to review the recommendations of this report.

This Document is provided for sole use by the Client and is confidential to it and its professional advisers. No responsibility whatsoever for the contents of this Document will be accepted to any person other than the Client. Any use which a third party makes of this Document, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Morrow Geotechnics accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this Document.